
J .  Fluid Mech. (1970), vol. 42, part 4, pp .  671-687 

Printed in Great Britain 

671 

A lock exchange flow 

By I. R. WOOD 
Water Research Laboratory, University of New South Wales, Australia 

(Received 25 October 1968 and in revised form 19 August 1969) 

In this paper the interchange flow between two reservoirs connected by a con- 
traction and containing fluid of different densities is considered. The effect of 
the boundary layers on the floor and walls of the contraction on the depth of 
flow in the contraction is discussed for the case of single layer flowing from one 
reservoir to the other. Next the theory for a denser layer plunging under a 
stationary layer is developed. In  this case there is a discontinuity at the point 
of intersection of the surfaces of the flowing and the stationary fluids and there 
are three possible flow regimes depending on whether this discontinuity occurs 
at, downstream of, or upstream of the contraction. 

Finally, the case where there is an interchange flow with fluid flowing from 
each reservoir into the other is introduced. This latter theory parallels that deve- 
loped by Wood (1968) for the case oftwo layers flowing from one reservoir through 
a contraction into another reservoir and as in this case there are two points of 
control, one at the position of minimum width and one (the virtual point of 
control) away from this position of minimum width. 

Experiments are described for a single layer flowing through the contraction 
and the results of these are used to obtain an indication of the accuracy that could 
be expected from the experiments with the more complicated exchange flow. 
The experiments with the exchange flow verified the major elements of the theory. 

1. Introduction 
The flow of a heavy fluid under a lighter fluid is a relatively common natural 

occurrence. Indeed engineers since O’Brien & Cherno (1934) have been interested 
in the nature of the flow that arises when a lock gate with saline water on one 
side and fresh water on the other is opened and salt water intrudes under the 
fresh. This interest has continued up to the present day (Keulegan 1957; Barr 
1963, 1967). The flow is normally studied in the laboratory in long flumes and 
in these cases the flow is unsteady. If, however, the lock gate connects two in- 
finite reservoirs one containing saline water and the other containing fresh, and 
the gate is removed, then at a sufficient time after the removal of the gate the 
contraction controls the interchange flow and the flow is effectively steady. 
This type of flow is important in the interchange of salt and fresh water at the 
mouths of estuaries (Stommel & Farmer 1952, 1953). It would also occur when 
there is salt water under fresh water on one side of the lock gate and turbid water 
under fresh water on the other. These types of flow are illustrated in figure 1 
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FIGURE 1. The types of exchange flow. (a) Plan. (a) Elevation, initial conditions t = 0. 
( c )  Elevation, final conditions t = m, Yl < Yz. ( d )  Elovation, final conditions t = co, 
Yl > Yz. 
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and it is these flow situations that are being studied. The solutions obtained are 
those for the final steady flow of the lock exchange phenomena. However, the 
theory should be satisfactory in all cases where the reservoirs are large enough for 
the time for a particle to travel through the contraction to be short compared 
with the time for the streamline patterns to  change due to the changes in levels 
in the reservoirs. 

2. Theory 
2.1. TheJEow of a single layer 

Two reservoirs are connected by a channel of gradually varying width and the 
condition that the depth of the single flowing layer is continuously decreasing 
from the upstream to the downstream reservoir is examined. In  the upstream 
reservoir the width becomes infinite, the velocity tends to zero and the surface 
approaches the still fluid level. In  the downstream reservoir the width again 
becomes large and, because of limited flow through the contraction, the depth 
tends to a very small value. 

In  this section the flow of areal fluid is analyzed. This leads to an understanding 
of the magnitude of the errors involved in using the inviscid fluid assumption 
in the more complicated flows and is an aid in interpreting the experimental 
results. 

Consider a contraction connected to an infinite reservoir as illustrated in 
figure 2. Let the density of the fluid in layers 0 and 1 be po and p1 = po + Apl 
and let the depth of layer 1 in the reservoir be Y,. Further the width of the con- 
traction is b(x )  where xis the distance measured along the contraction centreline. 
Let the discharge in the flowing layer be Q1 and the depth of the layer at  any 
position 2 be yl. Suppose the velocity at  a point in the region of flow is 2r and the 
area of flow A .  Assume that the rate of convergence of the contraction is suffi- 
ciently small so that the vertical curvature of the streamlines is negligible and 
hence the hydrostatic approximation is reasonable (Henderson 1966). 

In  the flow of any real fluid a boundary layer will exist adjacent to the walls 
and the interfaces between the fluids. Because of the existence of these boundary 
layers the flow external to these layers is displaced and the appropriate dis- 
placement thickness of these boundary layers must be allowed for when com- 
paring experiment and theory. In what follows the fluid will be considered as 
divided into a region where the flow has not been affected by the boundary layers 
against the walls, floor and interface, and a region within the boundary layer. 
This division is, however, not critical and should the boundary layers extend 
throughout the flow the argument is not affected. 

Let V, be the velocity calculated assuming the fluid is inviscid. (This will be 
the actual velocity in the region outside the boundary layers.) Then the effective 
area at  any section in the contraction may be calculated from 

- 
wzA = I A  wdA = &,. 

E’urther, at the mid-depth of the flow (iy) an effective width 6 may be calculated 
43 F L M  42 
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FIGURE 2. The details of a single flowing layer. (a) Plan. (71) Elevation. 
(c) Section AA of the elevation. 
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from 

From these we define an average depth 

y1 = 216. (3) 

Combining the hydrostatic pressure and the potential energy terms, Bernoulli's 
equation in the region where the flow is not affected by viscosity is 

or 

If Q1 is known and the conditions at infinity are known (Yl,Apl,pl) then for 
the inviscid case where p1 = y1 and 8 = b this equation yields y1 in terms of the 
width b at every x. The remaining equation required to determine the value for 
Q1 is obtained by assuming that the interface slopes smoothly from its value of 
Yl in the wide upstream reservoir to its very small value in the wide downstream 
reservoir (figure 2), and thus dyldx at the position of minimum width is finite. 
For the case where the fluid is not inviscid the same method is used but a dis- 
placement thickness is defined as 

and, using this expression, y1 is eliminated from (5). Then differentiating ( 5 )  
with respect to x we obtain 

a* = Y1-31 

Now the growth of the boundary layer is small and d&,/dx may be neglected. 
Thus a t  the position where d6ldx equals zero for dijl/dx to be finite we have 

Substituting from (7) into (5) we obtain, at  the position where &/dx equals 
zero, 

Thus the boundary layers on the floor of the channel and between the flowing 
and stationary layers increase the depth at  the minimum width by one third of 
the displacement thickness (&). Further if the width through the contraction is 
very narrow the boundary layers on the wall of the contraction increase the 
effective displacement thickness (6,). 

(8 )  Y l l y l  = Q +Q~*lY1. 

2.2. The flow of multiple layers 

Having briefly outlined the effects of the viscous boundary layer in the most 
simple flow case we proceed assuming that the fluids are inviscid. Again the 
hydrostatic assumption is used and this limits the solution to gradual contrac- 
tions. In  this case three layers (0 ,1 ,2)  are considered with densities p,,, 

43-2 
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p, = po + Apl and p2 = p, + Apl + Ap,. The upper layer is considered as very deep 
and an interchange flow between layers (1) and ( 2 )  is considered. This type of 
flow may be produced in the laboratory by placing a submerged gate in a con- 
traction connecting two reservoirs containing fresh water. Salt waters of different 
densities are then placed under the fresh water on either side of the gate (figure 
1 (b ) ) .  Now provided the hydrostatic pressure from the denser layer at  the base 
of the gate is greater than that of the lighter layer, then once the gate is removed 
an interchange flow of the type illustrated in figures 1 (c)  or 1 ( d )  develops. 

Let the lower two layers have depths in the wide reservoirs of Yl and Yz. 
The geometry of the contraction is assumed to be the same as previously, and the 
discharges in the layers are taken as Q1 and Q2 respectively. Further, let the 
velocities and depths at any position in the final steady-state flow be vl, v2, y1 
and y2 respectively. It is apparent that at  the base of the gate the pressure from 
the denser fluid is greater than that from the lighter fluid if Y2 (Ap, + Ap2) > Yl Ap,. 
If this is satisfied then the Bernoulli equations for the flowing layers are 

These two equations, together with the condition that dy,/dx and dy21dx re- 
main finite determine the final steady-state flow in case of figure 1 (d) and for most 
of the flow situations of the type illustrated in figure 1 (c). The exception is the 
case where the surfaces of the stationary layer (1) and the flowing layer ( 2 )  
intersect at  the point of the minimum width (i.e. where dbldx = 0) .  

(a )  The case of a single layer plunging under a stationary layer. Consider firstly 
the case where Yl < Y2. Here there is no flow in layer (1) (figure 1 (c)) .  In this case 
the form of the Bernoulli equation will be different in the regions upstream and 
downstream of the point where the flowing layer plunges under the stationary 
fluid. Three distinct flow regimes are possible, depending upon whether this 
plunge point is downstream of the position of minimum width (regime (I)), 
at  the position of minimum width (regime (a)), or upstream of the position of 
minimum width (r6gime (3)).  

Defining a12 = Apl/Ap2 the equation obtained from (10) for the region where 
y2 > Y, (i.e. upstream of the point of intersection of the flowing and the stagnant 
fluid) is 

In the region where y2 < Yl (i.e. downstream of the point of intersection of the 
surface of the flowing and the stagnant fluid) we obtain, after substituting in 
(10) from equation (9) with Q1 = 0 

These two equations are plotted in figure 3 for the case of a12 = 1 with (p2/Ap2g) 
(Q2/b)2 l/Y;, a type of Froude number, as ordinate and y2/Y2 as abscissa. The 
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curve OA'AM,MzBY2 is a plot of equation (11) and curves OB'A, OC'M,, 
OD'M,B and OE'M,Y2 are plots of equation (12) for YJY, equalling 0-5, 0.80, 
0-95 and 1-0 respectively. Consider now an example of the flow in each regime. 
The case where Yl = 0.5Y2 is an example of regime (1) where the plunge point occurs 
downstream of the position of minimum width. The complete solution for the 
value of (p,/Ap,g) (&,/b) 21/Y2 is given by OB'AMIM,BY,. The segment of this 
curve OB'A is a solution of equation (12) and the segment AM,M,BY, is a solu- 
tion of (1 1). It is apparent that the maximum value of &,/b (i.e. the value at  the 
position of minimum width) is unaffected by the downstream depth Yl and is 
determined from (11) as in $2.1. This maximum occurs when y2 = #Y2 and this 
condition implies that at  the minimum width dy2/dx is finite. At the junction of 
the two curves (i.e. where y, = Yl) there is a discontinuity and this implies a 
discontinuity in dy,/dx. In this case and indeed in the whole of regime (1) where 
Yl < #Y, the contraction controls the flow and discharge is the same as if there 
were no Yl. 

FIGURE 3. The solution for the plunging layer. The plot of the dimensionless depth 
( y z / Y z )  wersu8 a discharge parameter ( p z / A p z g ) ( Q z / b ) z ( l / Y ~ ) .  -, equation (11 ) .  Equation 
(12):-- ,Y1/Y 2 -  - 0.5;---- ,Y,IY, = 0.666; . . . . . ., YJYZ = 0.80;-*-*- , YJY, = 1.00. 

Consider now the case where Yl > #Y2. The curve OG'M,BY2 is an example 
of the type of flow in regime (2). In  this case OC'M, is a solution of equation (12) 
and M,B& is a solution of equation (11). In  this flow the maximum value of 
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Q2/b (the value that will occur at  the minimum width of the contraction) is 
obtained by the intersection of equations (11) and (12). At this point (the mini- 
mum width) there is a discontinuity in the slope of the curve of y2/Y2 versus 
(p2/Ap2g) (Q,lb)2 l/Y; and hence a discontinuity in dy,/dx. 

There are a range of flows that are possible where Yl > QY, for which the 
maximum value of Q2/b occurs where there is a sharp discontinuity in the 
curve of y2/Y2 versus (p2/Ap2g)(Q2/b)21/Y:. For these cases there is a discon- 
tinuity in the effective Froude number of the flow. Upstream of the discontinuity 
the effective Froude number is (p2/[(Apl + Ap2)g]) (Q2/by2)2 l /y2 and the flow is 
subcritical. Downstream of the discontinuity the effective Froude number is 
(p2/Ap2g) (Q2/by,)2 l /y2 and the flow is supercritical. Thus as in the case of a 
normal open channel flow the flow upstream of the minimum width is subcritical 
and downstream of it is supercritical. 

In regime (3) the plunge point is upstream of the position of minimum width 
and a typical curve is OD’M,BY2. The maximum value of Q2/b is determined from 
(12). Inthis case the discontinuityin the curve of y2/Y2 versus (p2/Ap2g) (Q2/b)2 11 Yg 
has moved away from the maximum value of Q2/b and thus at  the position of 
minimum width dy2/dx is again finite. 

The maximum value of (p,/Ap2g)(Q,/b)2 I /  Yi  from equation ( 1 2 )  occurs when 
y2/Y2 equals #[ 1 + a12( 1 - Yl/Y2)] and is given by 

The lower limit of regime (2) is & = %Y2 and the upper limit is defined by the 
intersection of the equation (13) (curve M,IM3M5, figure 3 ) ,  and equation ( 1 1 ) .  
This is the solution of 

-($) P2 2 1  E=  2 ~ + ~ ~ ~ ) ( ~ - 3 ) ( % ) ~ =  [ % + ~ ~ ~ ~ ( ~ - g ) ] ~ .  (14) 

AP29 yz y2 

The value of y2 obtained from the above defines the upper limit of region (2) 
(M5, figure 3). 

(b) The interchangefiow. Now when 6 > Y2 flow commences in the upper layer 
and we move into regime (4) where a slightly different approach is convenient. 
It is assumed that y1 and yz decrease smoothly from their values in the upstream 
reservoirs (Y1 and y Z )  to the value of zero in the infinitely wide downstream 
reservoirs. Thus the flow is as in figure 1 ( d )  and providing the flow is stable it is 
appropriate to use the conditions that the values of dyl/dx and dy2/dx remain 
finite. The method then parallels that used by Wood (1968). 

Defining y ;  = yl/Y1, Yh = Y2/Y, and y i  = y2/Y1 and substituting into equations 
(9) and (10) we get 

and (QP)2~+a12y;+( l+a , ) l I ;  = ( l+a , , )Yi .  
ZAP29 by2 

If Q1 and Q2 and the conditions at  infinity Y ;  and a12 are known these two 
equations determine yi, and yi in terms of b at every x. Two further equations 
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are required to solve for Q,  and Q,. These equations come from the condition that 
as b decreases from its large value at  x = +co through its minimum at x = 0 
to a large value at x = -m it  is required that the lower layer continuously 
decreases from its value in the reservoir ( YL) at x = + m to a very small value at  
x = - m and the upper layer continuously increases from a very small value at 
x = + co to a value of Y, at x = - m. These conditions determine a possible flow. 
To obtain this flow it is necessary to  obtain the conditions for which dy;/dx 
and dy.@x are always finite. 

Differentiating (15) and (16) with respect to x and solving for dy;/dx and 
dy;/dx we get dy;---- - 1 db D, 

dx b dx D,’ 
dy; 1 db D, 
dx  b dx D,’ 

- 

and 

Now from equations (17) and (18) at the position of minimum width where 
dbldx = 0 we have dy@x and dyL/dx equal zero or D, = 0. We require the inter- 
faces to be continuously sloping and can therefore exclude the case where the 
slopes are zero. Further, if at  any other point D, = 0 then to obtain finite values 
of dy$x and dyhldx then D, and D, must equal zero. It can be shown that the 
condition D, and D, equal zero together implies that D, also equals zero. It is 
these two conditions which ultimately enable the relationships between Q,, 
Q,, y; and y; to be obtained. 

The condition that D, = 0 at the minimum width (where db/dx = 0) gives us 
three equations at  this point. However, a fourth equation is required and it is 
therefore necessary to examine the variation of D, with x. 

In  the reservoir where x = + co, y; = YL and y; tends to a smallvalue. Substitut- 
ing these values into equations (15) and (16) we get after some algebra 3’: tends 
to a large value and Fg tends to zero. Hence D, tends to a large negative 
value. Similarly when x = -a, D, tends to  a large negative value. Three 
points of the curve of D, versus x (figure 4) have now been determined and it 
can be shown that when b(x) has only one minimum the graph of D, versus x has 
only one turning point, and hence the possible curves of D,  versus x are as in 
figure 4 and the equation 

holds at  the position of minimum width and at some other point. This second 
point is called the point of virtual control (Wood 1968) and in order that dy;/dx 
and dyildx remain finite at this point then (from equations (17) and (18)) 

D, = 0 (19) 

D, = 0 (20) 

and D, = 0. (21) 
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At this point of virtual control we have four equations, (20) ,  (21) ,  (15) and (16), 
and these may be solved for the four unknowns &,/byl, &,/by2, y; and yk. These 
equations are solved using c2 = p2v~/p1v:, q5 = p1v:/2AplgYl, y; and y; as the 
variables and eliminating y; and yi from (15) and (16) and substituting into 
(20)  and (21).  If A is defined as Yi( 1 + aI2) - a12 then the solutions are 

c2 = Yi(1 +a,2)/a,2, (22)  

t 
D 

FIQURE 4. The variation of the determinant D, = (1 -P:)(l -+uI2-q ) -u l2  through the 
contraction. Note the point a = 0 is the position of minimum width in the contraction. 

Equations (22) ,  (24)  and (25)  lead to 

This completes the calculations at the virtual control point and it is worth noting 
that calculations at  this unknown point have given the ratio of discharges in 
the layers. 

In obtaining the solution, the point of virtual control, Bernoulli’s equations, 
and the conditions that the interfaces of the two flowing layers are continuous 
from one reservoir to the other have been used. Now Bernoulli’s equation con- 
tains only the vslocities squared. Hence the solutions at the virtual control do 
not depend on the direction of flow but only on the energy level of each layer in 
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the reservoir. Thus the solutions at  this point are essentially the same as those 
obtained by Wood (1968). 

It is now required to determine the conditions at the position of minimum 
width. Since the flow is steady the ratio of the discharges is independent of x 
and (26) must therefore hold at the position of minimum width. Further, since 
at the position of minimum width dbldx equals zero, (19) must be satisfied. These 
two equations together with (9) and (10) provide the solution for 4, c2, y; and yi. 
Eliminating y; and y; from these equations we obtain from the expression for 
the discharge ratios (26) 

(27) 
(1 +a,,)(c + Q21) yi - ca12 - (1 + a121Q21 

a12c2(c + Q21) - ca12 - (1 + a12)4?21 
#J = ’ 

where Q,, = Q2/Q1. From D, = 0, (19), we obtain 

(c- $[3c + 24?211) (QZ1(1 + alz) - 4[QZ1(1 + a12) + aI2(2c3 + 2c2&21)1) 

- 0112( 1 - $ ) 2 Q 2 1 ~  = 0. (28) 

y ;  

FIQURE 5. Computed values of the depth of the upper and lower layers (yi and y;) at 
the minimum width o f  the contraction as a function of the ratio of  the reservoir depths 
(Y; = Yl/Y2) for a range of density difference ratios (al2). 
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The simultaneous solution of (27) and (28) was obtained using a computer which 
determined the values of $, c, a t  the virtual control, calculated the gradient 
of D, a t  this virtual control, and then increased c until the second value a t  which 
D, = 0 was obtained. Once the value of c and # a t  which D, = 0 was obtained 
the remaining variables a t  the minimum width were computed. Figure 5 gives 
the computed values ofthe depth of each layer (yl and yb) obtained at  the point 
of minimum width (the second position at which D, = 0) for the range of values 
of YL and for constant values of aI2. 

0 0.2 0.4 0.6 0.8 

y; - Y2Fl 

FIGURE 6. Computed values of a discharge parameter in each layer as a function of the 
ratio of the reservoir depths ( Y ;  = Yl/Y2) for 8 range of density difference ratios (al2). 
-_- 9 HpllApig) (Qi/b)'1/Y3,; -9 B(P2/Apzg) ( Q Z I ~ ) ~ ~ I Y : .  

Figure 6 gives the computed value of discharge parameters 
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for the range of values of Y ;  and constant values of al,. From these curves the 
final steady-state properties of layers at, the minimum width for given conditions 
in the reservoirs can be determined. 
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Interflow channel Reservoir 

3 ft. lo) in. I 
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FIGURE 7. Details of the experimental contractions. (a)  Plan. ( b )  Section A-A. 
(c) Plan. (d )  Section B-B. 

This theory has been developed by assuming that the slopes of the interfaces 
of the two flowing layers are continuous from reservoir to reservoir, but the 
results could have been obtained using long wave theory to determine the critical 
sections and carrying out the calculations at  these sections. It is also important 
to note that although no Boussinesq type approximation has been used in the 
above theory the applicability of the results depends on the stability of inter- 
faces and this will limit the use of the theory to cases where Apl and bp, are both 
small. This is discussed in the next section. 

3. Experiments 
Some experiments to confirm the major features of the analysis were carried 

out in a flume that was 8 ft. long, 2 ft.  wide, and one foot high. The reservoirs were 
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formed by placing a contraction in the flume and the reservoirs were separated 
by a gate at  the centre of the contraction. The geometry of the two contractions 
used is illustrated in figure 7. The flume was partially filled with fresh water and 
coloured salt waters of the different densities which made up layers (1) and (2) 
were pumped slowly under the fresh water. The experiments were commenced 
by removing the gate and, a short time after this, the flow settled down and the 
reservoir level changes became slow. A typical exchange flow experiment is 
illustrated in figure 8, plate 1. It is important to note that the velocities in the 
fresh water (p,) were kept as low as possible by having a large interflow channel 
above the level of the flowing layers (figure 7). 

The measurements in all experiments were recorded photographically. 
Initially black and white photographs were taken but light going through the 
dyed layers caused shadows on the contraction and made measurements diffi- 
cult. This was overcome by using colour film. Scales were placed on the outer 
walls of the perspex flume at the centre of the contraction and in each reservoir 
(figure 7). White background strips were placed in each reservoir the same dis- 
tance from the inner wall of the perspex flume as the white wall of the contraction 
(figure 7). Thus in every case when a scale was being read the observer was look- 
ing through the same distance of coloured fluid and the errors caused by any 
slight indistinctness of the interfaces should be constant. 

In  order that the theory should be strictly applicable to the experimental 
conditions it was necessary for the changes in the reservoirs to  be slow and there- 
fore the reservoirs large and the width of the contraction narrow. However, so 
that the one-dimensional approach used in the theory should be applicable the 
sides of the contraction had to converge and diverge gradually. Also, to mini- 
mize the effects of the boundary layers on the depth it was desirable to have 
large velocities through the contraction. This maximum velocity was limited 
by the necessity to maintain smooth stable interfaces. Indeed if the values of 
Apl and Apz used were too large the interfacial boundary layer remained very 
thin and instabilities of the type described by Thorpe (1968) developed. Further, 
to keep the boundary layers on the walls to a minimum it was desirable to have 
the contraction as wide as possible. 

These requirements are conflicting and SO to select a reasonable contraction 
some experiments were carried out with a single layer of water flowing under 
air through a contraction. Initially water was pumped into the reservoir up- 
stream of the contraction and allowed to flow through the contraction. In  this 
case for the contraction with a width of 1.75 in. (figure 7) the ratio of depth at 
the contraction to that far upstream was found to be 0.68 f 0.01, and for the 
narrow contraction with a width of 0.72 in. this ratio was 0.69 f 0.01. Two narrow 
contractions, one with a curvature considerably more gradual than the other 
were used. Both gave the value of the ratio as 0-69. The differences in the values 
obtained in wide and narrow contractions may have been caused by the increase 
in the effective displacement thickness of the floor boundary layer caused by 
the interference of the wall boundary layers ($2.1).  

The narrow and the wide contractions were both used with a single layer of 
salt water flowing under fresh water. In  every case the large interchange channel 
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provided above the level of the salt layers reduced the velocities in the fresh water 
to a small fractiomof the velocities in the flowing salt layers. This was checked 
qualitatively in a number of experiments by the dropping of dye crystals in the 
flow and observing their subsequent traces. The values obtained for the wide 
contraction and narrow contraction were 0-69 & 0.01 and 0.71 & 0.01 respectively. 

0.7 r 

FIGURE 9. A comparison of the computed and experimental values of the depth of the 
lower layer (y;) of a lock exchange flow. --, y; experiment; -, yh computed. Values 
of a12: +, 0.685; 0, 0.690; V ,  0.622; 0, 3.1; 0 ,  2.7; X ,  1.5. 

The differences between the case with an air-water interface and a salt-fresh 
water interface would be due to the appearance of a boundary layer and hence a 
displacement thickness on the salt-fresh-water interface and the increase in 
thickness of the displacement of the boundary layer on the floor. This latter effect 
would be caused by the lower Reynolds number of the flow. 

These viscous effects would obviously affect the flows in the more complicated 
situations of lock exchange flow and thus great accuracy should not be expected 
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from the experiments. It was apparent that the wall effects would be the smallest, 
and the greatest accuracy could be expected from the wider contraction. How- 
ever, it was found that the waves set up by the removal of the gate were more 
pronounced in this wide contraction and this made measurement in the more 
complicated Aows difficult. It was therefore decided to use the narrow contrac- 
tion and to accept the errors inherent in this geometry. 

0.7 

0.6 

0.5 

0-4 

Y1 

0.3 

0.2 

0.1 

a 12=0.7 

\ 
\ 
\ 
A 

1 I I I I 

y;  
FIGURE 10. A comparison of the computed and experimental values of the depth of the 
upper layer (y;) of a lock exchange flow. --, yi  experiment; __ , y; computcd. Values 
of a12: 0, 0.685; A, 0.690; X ,  0.622; 0 ,  3.1; B, 2.7; +, 1.5. 

The experiments with lock exchange flow were set up in a similar manner to 
those already described. Figure 8, plate 1, shows a typical exchange flow at a 
time when the changes in levels in the reservoirs were small. From this and similar 
photographs measurements were made of the levels of the interfaces of the layers. 

In  the theory it was assumed that the depth of y; in the reservoir containing 
pz and that of yh in the reservoir containing p1 tended to zero. In  the experiments 
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this was not the case and both y; and y; in their respective reservoirs tended 
to small finite values. In  order to obtain the correct energy levels for layer (1) 
the effective Yl was the distance between the horizontal bed (the datum) and the 
upper interface and the effective Y2 was the depth from the horizontal bed to 
the interface of layer (2) plus the effective head due to the upper fluid (i.e. 
ApIyl/(Apl + Ap2)) .  All depths were expressed non-dimensionally in terms of 

Figures 9 and 10 show the experimentally determined curves and those ob- 
tained theoretically for a12 of 0.70, 1-5 and 2.9. The data exhibit the predicted 
variation with YL and aI2. Indeed for the values of y; (figure 9) the theoretical 
and experimental curves agree to within the magnitude of the errors one might 
associate with the growth of boundary layers (6 yo). However, the fact that two 
of the curves are above the theoretical curve and one is below is surprising. The 
agreement between the experimental and theoretical values of y; is not as good 
but it is only for the value a12 = 0.65 and YL exceeding 0.80 that the agreement 
is outside the anticipated errors. In  this region the small density differences and 
small depths in the upper layer (yl) made the velocities extremely small and this 
could have made both the time-dependent and viscous effects important. 
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FIGURE 8. Photograph of n typical experiment. 
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